MATH2010B Advanced Calculus I, 2014-15

Midterm Test Solutions

Q1. (a) (6 points) Find an equation of the plane passing through the point (1, 0, 4) and perpendicular to the line $L = \{(2, 5, 8) + t(-1, 19, 1) : t \in \mathbb{R}\}.$

Solution: A normal to the plane is $\mathbf{n} = (-1, 19, 1)$ and a point on the plane is $\mathbf{p} = (1, 0, 4)$. The equation for the plane passing through \mathbf{p} and normal to \mathbf{n} is given by

$$\mathbf{x} \cdot \mathbf{n} = \mathbf{p} \cdot \mathbf{n}.$$

Since $\mathbf{p} \cdot \mathbf{n} = (1, 0, 4) \cdot (-1, 19, 1) = -1 + 0 + 4 = 3$, we get
 $-x + 19y + z = 3.$

(b) (6 points) Let $E = \{(x, y) : x^2 + 4y^2 = 4\}$ be an ellipse. Write down a parametrization $\gamma(t) : [a, b] \to \mathbb{R}^2$ of the ellipse and the definite integral that computes the length of the ellipse E (you DO NOT have to evaluate the integral).

Solution: A parametrization is given by

$$\gamma(t) = (2\cos t, \sin t), \qquad t \in [0, 2\pi].$$

Hence we can calculat

$$\gamma'(t) = (-2\sin t, \cos t),$$
$$\|\gamma'(t) = \sqrt{4\sin^2 t + \cos^2 t} = \sqrt{1 + 3\sin^2 t}.$$

Therefore, the length of the ellipse is

$$L = \int_0^{2\pi} \sqrt{1 + 3\sin^2 t} \, dt.$$

Q2. (8 points) Define the function $f(x, y) : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{1}{x}\sin xy & \text{if } x \neq 0, \\ y & \text{if } x = 0. \end{cases}$$

Evaluate the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ or explain why the limit does not exist.

Solution: Note that along different straight lines approaching (0,0),

$$\lim_{\substack{(x,y)\to(0,0)\\x=0}} f(x,y) = \lim_{y\to 0} y = 0,$$
$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} f(x,y) = \lim_{x\to 0} \frac{1}{x} \sin(x \cdot 0) = 0,$$
$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} f(x,y) = \lim_{x\to 0} \frac{1}{x} \sin kx^2 = \lim_{x\to 0} kx \cdot \lim_{x\to 0} \frac{\sin kx^2}{kx^2} = 0 \cdot 1 = 0.$$

In fact, we have $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. To see this, recall that $\lim_{\theta\to 0} \frac{\sin\theta}{\theta} = 1$. By definition, there exists $\delta_1 > 0$ small enough such that

$$\left|\frac{\sin\theta}{\theta} - 1\right| < 1$$
 for any $0 < |\theta| < \delta_1$.

This implies that

$$\left|\frac{\sin\theta}{\theta}\right| \le 2$$
 for any $0 < |\theta| < \delta_1$.

To show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, we use the $\epsilon - \delta$ -definition of limit. Let $\epsilon > 0$ be a small number, say $\epsilon < 1$, we take $0 < \delta < \min(\sqrt{\delta_1}, \epsilon/2)$, then we want to show that for any (x, y) such that $\sqrt{x^2 + y^2} < \delta$, we have

$$|f(x,y)| < \epsilon.$$

Since f(x, y) is defined differently at different points, we have to consider 3 cases: Case 1: $x \neq 0$ and $y \neq 0$. Then, since $|xy| \leq \frac{x^2+y^2}{2} < \frac{\delta_1}{2}$, we have

$$|f(x,y)| = \left|\frac{1}{x}\sin xy\right| = |y|\left|\frac{\sin xy}{xy}\right| \le 2|y| < \epsilon.$$

Case 2: x = 0 and $y \neq 0$. Then clearly $|f(x, y)| = |y| < \epsilon$. Case 3: $x \neq 0$ and y = 0. Then $|f(x, y)| = 0 < \epsilon$.

Combining all these 3 cases, we have proved our assertion.

Q3. (8 points) Find an equation for the tangent plane of the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = e^y \sin x\}$$

at the point $(\pi, 0, 0)$.

Solution: Let $f(x, y) = e^y \sin x$. Then taking partial derivatives, we get

$$\begin{cases} f_x = e^y \cos x, \\ f_y = e^y \sin x, \end{cases}$$

which implies $f_x(\pi, 0) = -1$ and $f_y(\pi, 0) = 0$. The equation for the tangent plane is given by the formula

$$z = f(\pi, 0) + f_x(\pi, 0)(x - \pi) + f_y(\pi, 0)(y - 0).$$

Since $f(\pi, 0) = 0$, the equation is just

 $x + z = \pi$.

Q4. (8 points) Show that the function

$$u(t,x) = \frac{1}{\sqrt{t}}e^{-\frac{x^2}{4t}}$$

satisfies the partial differential equation $u_t = u_{xx}$ for any t > 0 and $x \in \mathbb{R}$.

Solution: Taking partial derivatives directly.

$$u_{t} = -\frac{1}{2} \frac{1}{t^{3/2}} e^{-\frac{x^{2}}{4t}} + \frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4t}} \left(\frac{x^{2}}{4t^{2}}\right)$$
$$= \frac{1}{t^{3/2}} e^{-\frac{x^{2}}{4t}} \left(-\frac{1}{2} + \frac{x^{2}}{4t}\right).$$
$$u_{x} = \frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4t}} \left(-\frac{x}{2t}\right).$$

$$u_{xx} = \frac{1}{\sqrt{t}} e^{-\frac{x^2}{4t}} \left(-\frac{1}{2t} + \frac{x^2}{4t^2} \right)$$
$$= \frac{1}{t^{3/2}} e^{-\frac{x^2}{4t}} \left(-\frac{1}{2} + \frac{x^2}{4t} \right)$$

Hence, we have shown that $u_t = u_x x$.

Q5. (12 points) Find the maximum and minimum of the function f(x, y) = xy on the region

$$R = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2 \}.$$

Locate the points where the minimum and maximum are achieved.

Solution: For the interior critical points, we solve

$$\begin{cases} f_x = y = 0\\ f_y = x = 0 \end{cases}$$

to get only one critical point (0,0) with f(0,0) = 0.

For the boundary points, we use polar coordinates (r, θ) , hence ∂R is simply $r = \sqrt{2}$. In polar coordinates,

$$f(\sqrt{2},\theta) = 2\sin\theta\cos\theta = \sin 2\theta,$$

which clearly has its maximum = 1 when $\theta = \pi/4$ and $5\pi/4$, and has its minimum = -1 when $\theta = 3\pi/4$ and $7\pi/4$.

Combining all these, the maximum of f is 1 located at (1,1) and (-1,-1) and the minimum of f is -1 located at (1,-1) and (-1,1).

Q6. (12 points) Consider the function

$$f(x,y) = \begin{cases} x - 2y \tan^{-1} \frac{x}{y} & \text{when } y \neq 0\\ x & \text{when } y = 0 \end{cases}$$

compute the partial derivative f_x and determine if f_x is continuous at (0,0).

Solution: Differentiating directly, we get

$$f_x(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{when } y \neq 0, \\ 1 & \text{when } y = 0. \end{cases}$$

Note that

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} f_x(x,y) = \lim_{\substack{(x,y)\to(0,0)\\y=0}} 1 = 1,$$
$$\lim_{\substack{(x,y)\to(0,0)\\x=0}} f_x(x,y) = \lim_{y\to 0} \frac{-y^2}{y^2} = -1,$$

which are not equal. Therefore, f_x is NOT continuous at (0,0).