MATH2010B Advanced Calculus I, 2014-15

Midterm Test Solutions

Q1. (a) (6 points) Find an equation of the plane passing through the point ($1,0,4$) and perpendicular to the line $L=\{(2,5,8)+t(-1,19,1): t \in \mathbb{R}\}$.

Solution: A normal to the plane is $\mathbf{n}=(-1,19,1)$ and a point on the plane is $\mathbf{p}=(1,0,4)$. The equation for the plane passing through \mathbf{p} and normal to \mathbf{n} is given by

$$
\mathbf{x} \cdot \mathbf{n}=\mathbf{p} \cdot \mathbf{n} .
$$

Since $\mathbf{p} \cdot \mathbf{n}=(1,0,4) \cdot(-1,19,1)=-1+0+4=3$, we get

$$
-x+19 y+z=3
$$

(b) (6 points) Let $E=\left\{(x, y): x^{2}+4 y^{2}=4\right\}$ be an ellipse. Write down a parametrization $\gamma(t):[a, b] \rightarrow \mathbb{R}^{2}$ of the ellipse and the definite integral that computes the length of the ellipse E (you DO NOT have to evaluate the integral).

Solution: A parametrization is given by

$$
\gamma(t)=(2 \cos t, \sin t), \quad t \in[0,2 \pi] .
$$

Hence we can calculat

$$
\begin{gathered}
\gamma^{\prime}(t)=(-2 \sin t, \cos t) \\
\| \gamma^{\prime}(t)=\sqrt{4 \sin ^{2} t+\cos ^{2} t}=\sqrt{1+3 \sin ^{2} t}
\end{gathered}
$$

Therefore, the length of the ellipse is

$$
L=\int_{0}^{2 \pi} \sqrt{1+3 \sin ^{2} t} d t
$$

Q2. (8 points) Define the function $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{x} \sin x y & \text { if } x \neq 0, \\
y & \text { if } x=0 .
\end{array}\right.
$$

Evaluate the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ or explain why the limit does not exist.
Solution: Note that along different straight lines approaching $(0,0)$,

$$
\begin{gathered}
\lim _{\substack{(x, y) \rightarrow(0,0) \\
x=0}} f(x, y)=\lim _{y \rightarrow 0} y=0, \\
\lim _{\substack{(x, y) \rightarrow(0,0) \\
y=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{1}{x} \sin (x \cdot 0)=0, \\
\lim _{\substack{(x, y) \rightarrow(0,0) \\
y=k x}} f(x, y)=\lim _{x \rightarrow 0} \frac{1}{x} \sin k x^{2}=\lim _{x \rightarrow 0} k x \cdot \lim _{x \rightarrow 0} \frac{\sin k x^{2}}{k x^{2}}=0 \cdot 1=0 .
\end{gathered}
$$

In fact, we have $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. To see this, recall that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$. By definition, there exists $\delta_{1}>0$ small enough such that

$$
\left|\frac{\sin \theta}{\theta}-1\right|<1 \quad \text { for any } 0<|\theta|<\delta_{1} \text {. }
$$

This implies that

$$
\left|\frac{\sin \theta}{\theta}\right| \leq 2 \quad \text { for any } 0<|\theta|<\delta_{1} \text {. }
$$

To show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$, we use the $\epsilon-\delta$-definition of limit. Let $\epsilon>0$ be a small number, say $\epsilon<1$, we take $0<\delta<\min \left(\sqrt{\delta_{1}}, \epsilon / 2\right)$, then we want to show that for any (x, y) such that $\sqrt{x^{2}+y^{2}}<\delta$, we have

$$
|f(x, y)|<\epsilon
$$

Since $f(x, y)$ is defined differently at different points, we have to consider 3 cases:
Case 1: $x \neq 0$ and $y \neq 0$. Then, since $|x y| \leq \frac{x^{2}+y^{2}}{2}<\frac{\delta_{1}}{2}$, we have

$$
|f(x, y)|=\left|\frac{1}{x} \sin x y\right|=|y|\left|\frac{\sin x y}{x y}\right| \leq 2|y|<\epsilon .
$$

Case 2: $x=0$ and $y \neq 0$. Then clearly $|f(x, y)|=|y|<\epsilon$.
Case 3: $x \neq 0$ and $y=0$. Then $|f(x, y)|=0<\epsilon$.
Combining all these 3 cases, we have proved our assertion.
Q3. (8 points) Find an equation for the tangent plane of the surface

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: z=e^{y} \sin x\right\}
$$

at the point $(\pi, 0,0)$.
Solution: Let $f(x, y)=e^{y} \sin x$. Then taking partial derivatives, we get

$$
\left\{\begin{array}{l}
f_{x}=e^{y} \cos x, \\
f_{y}=e^{y} \sin x,
\end{array}\right.
$$

which implies $f_{x}(\pi, 0)=-1$ and $f_{y}(\pi, 0)=0$. The equation for the tangent plane is given by the formula

$$
z=f(\pi, 0)+f_{x}(\pi, 0)(x-\pi)+f_{y}(\pi, 0)(y-0) .
$$

Since $f(\pi, 0)=0$, the equation is just

$$
x+z=\pi .
$$

Q4. (8 points) Show that the function

$$
u(t, x)=\frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 t}}
$$

satisfies the partial differential equation $u_{t}=u_{x x}$ for any $t>0$ and $x \in \mathbb{R}$.
Solution: Taking partial derivatives directly.

$$
\begin{gathered}
u_{t}=-\frac{1}{2} \frac{1}{t^{3 / 2}} e^{-\frac{x^{2}}{4 t}}+\frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 t}}\left(\frac{x^{2}}{4 t^{2}}\right) \\
=\frac{1}{t^{3 / 2}} e^{-\frac{x^{2}}{4 t}}\left(-\frac{1}{2}+\frac{x^{2}}{4 t}\right) . \\
u_{x}=\frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 t}}\left(-\frac{x}{2 t}\right) .
\end{gathered}
$$

$$
\begin{aligned}
u_{x x} & =\frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 t}}\left(-\frac{1}{2 t}+\frac{x^{2}}{4 t^{2}}\right) \\
& =\frac{1}{t^{3 / 2}} e^{-\frac{x^{2}}{4 t}}\left(-\frac{1}{2}+\frac{x^{2}}{4 t}\right)
\end{aligned}
$$

Hence, we have shown that $u_{t}=u_{x} x$.
Q5. (12 points) Find the maximum and minimum of the function $f(x, y)=x y$ on the region

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 2\right\}
$$

Locate the points where the minimum and maximum are achieved.
Solution: For the interior critical points, we solve

$$
\left\{\begin{array}{l}
f_{x}=y=0 \\
f_{y}=x=0
\end{array}\right.
$$

to get only one critical point $(0,0)$ with $f(0,0)=0$.
For the boundary points, we use polar coordinates (r, θ), hence ∂R is simply $r=\sqrt{2}$. In polar coordinates,

$$
f(\sqrt{2}, \theta)=2 \sin \theta \cos \theta=\sin 2 \theta
$$

which clearly has its maximum $=1$ when $\theta=\pi / 4$ and $5 \pi / 4$, and has its minimum $=-1$ when $\theta=3 \pi / 4$ and $7 \pi / 4$.
Combining all these, the maximum of f is 1 located at $(1,1)$ and $(-1,-1)$ and the minimum of f is -1 located at $(1,-1)$ and $(-1,1)$.

Q6. (12 points) Consider the function

$$
f(x, y)=\left\{\begin{array}{cl}
x-2 y \tan ^{-1} \frac{x}{y} & \text { when } y \neq 0 \\
x & \text { when } y=0
\end{array}\right.
$$

compute the partial derivative f_{x} and determine if f_{x} is continuous at $(0,0)$.
Solution: Differentiating directly, we get

$$
f_{x}(x, y)=\left\{\begin{array}{cl}
\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { when } y \neq 0 \\
1 & \text { when } y=0
\end{array}\right.
$$

Note that

$$
\begin{aligned}
& \lim _{\substack{x, y) \rightarrow(0,0) \\
y=0}} f_{x}(x, y)=\lim _{\substack{(x, y) \rightarrow(0,0) \\
y=0}} 1=1, \\
& \lim _{\substack{(x, y) \rightarrow(0,0) \\
x=0}} f_{x}(x, y)=\lim _{y \rightarrow 0} \frac{-y^{2}}{y^{2}}=-1,
\end{aligned}
$$

which are not equal. Therefore, f_{x} is NOT continuous at $(0,0)$.

